2,350 research outputs found

    Phase formation, phonon behavior, and magnetic properties of novel ferromagnetic La3BAlMnO9 (B = Co or Ni) triple perovskites

    Full text link
    In the quest for novel magnetoelectric materials, we have grown, stabilized and explored the properties of La3BAlMnO9 (B = Co or Mn) thin films. In this paper, we report the influence of the growth parameters that promote B/Al/Mn ordering in the pseudo-cubic unit cell and their likely influence on the magnetic and multiferroic properties. The temperature dependence of the magnetization shows that La3CoAlMnO9 is ferromagnetic up to 190 K while La3NiAlMnO9 shows a TC of 130 K. The behavior of these films are compared and contrasted with related La2BMnO6 double perovskites. It is observed that the insertion of AlO6 octahedra between CoO6 and MnO6 suppresses significantly the strength of the superexchange interaction, spin-phonon and spin-polar coupling.Comment: 13 pages, 3 fig

    Long-range Ni/Mn structural order in epitaxial double perovskite La2NiMnO6 thin films

    Full text link
    We report and compare the structural, magnetic, and optical properties of ordered La2NiMnO6 thin films and its disordered LaNi0.5Mn0.5O3 counterpart. An x-ray diffraction study reveals that the B-site Ni/Mn ordering induces additional XRD reflections as the crystal symmetry is transformed from a pseudocubic perovskite unit cell in the disordered phase to a monoclinic form with larger lattice parameters for the ordered phase. Polarized Raman spectroscopy studies reveal that the ordered samples are characterized by additional phonon excitations that are absent in the disordered phase. The appearance of these additional phonon excitations is interpreted as the clearest signature of Brillouin zone folding as a result of the long-range Ni/Mn ordering in La2NiMnO6. Both ordered and disordered materials display a single ferromagnetic-to-paramagnetic transition. The ordered films display also a saturation magnetization close to 4.8 mB/f.u. and a transition temperature (FM-TC) around 270 K, while the disordered ones have only a 3.7 mB/f.u. saturation magnetization and a FM-TC around 138 K. The differences in their magnetic behaviours are understood based on the distinct local electronic configurations of their Ni/Mn cations.Comment: 15 pages, 5 fig

    CCRS proposal for evaluating LANDSAT-D MSS and TM data

    Get PDF
    Accomplishments in the evaluation of LANDSAT 4 data are reported. The objectives of the Canadian proposal are: (1) to quantify the LANDSAT-4 sensors and system performance for the purpose of updating the radiometric and geometric correction algorithms for MSS and for developing and evaluating new correction algorithms to be used for TM data processing; (2) to compare and access the degree to which LANDSAT-4 MSS data can be integrated with MSS imagery acquired from earlier LANDSAT missions; and (3) to apply image analysis and information extraction techniques for specific user applications such as forestry or agriculture

    Ferromagnetic Domain Structure of La0.78Ca0.22MnO3 Single Crystals

    Full text link
    The magneto-optical technique has been employed to observe spontaneous ferromagnetic domain structures in La0.78Ca0.22MnO3 single crystals. The magnetic domain topology was found to be correlated with the intrinsic twin structure of the investigated crystals. With decreasing temperature the regular network of ferromagnetic domains undergoes significant changes resulting in apparent rotation of the domain walls in the temperature range of 70-150 K. The apparent rotation of the domain walls can be understood in terms of the Jahn-Teller deformation of the orthorhombic unit cell, accompanied by additional twinning.Comment: 7 pages, 5 figures, to be published in PR

    On the Slope-Aspect Correction of Multispectral Scanner Data

    Get PDF
    The effects of topography on the radiometric properties of multispectral scanner (MSS) data are examined in the context of the remote sensing of forests in mountainous regions. The two test areas considered for this study are located in the coastal mountains of British Columbia, one at the Anderson River near Boston Bar and the other at Gun Lake near Bralorne. The predominant forest type at the former site is Douglas fir, whereas forest types at the latter site are primarily lodgepole pine and ponderosa pine. Both regions have rugged topography, with elevations ranging from 275 to 1500 metres above sea level at Anderson River and from 670 to 1990 metres above sea level at Gun Lake. Lambertian and non-Lambertian illumination corrections are formulated, taking into account atmospheric effects as well as topographic variations. Terrain slope and aspect values are determined from a digital elevation model and atmospheric parameters are obtained from a model atmosphere computation for the solar angles and spectral bands of interest. In the Lambertian approximation, if sky irradiance and atmospheric path radiance are neglected, one is left with a cosine correction analogous to the one which has been used extensively to carry out illumination transformations of images of horizontal terrain. However, this extension of the simple cosine correction to the case of sloped terrain is shown to be inadequate, especially for larger angles of incidence. Attempts are also made to remove the effect of topography by means of semi-empirical functions primarily based on cosines of the incident and reflected illumination angles. In this vein, correlations and linear regressions between topographic parameters (such as elevation, slope, aspect, incidence angle, reflection angle) and MSS radiance values are investigated for the different forest types under consideration at each site. The analysis encompasses multitemporal Landsat MSS data at a resolution of 50 metres and 11 channel airborne MSS at resolutions of 20 and 50 metres. Slope aspect correction algorithms for both of these types of data are implemented in software on the image analysis system at the Canada Centre for Remote Sensing. Geometric rectification is also a prerequisite in order to relate image geometry to the map coordinates on which the digital terrain data are based. A special technique involving flight line modelling is used to accomplish this in the case of aircraft data since prior knowledge of the terrain elevation is needed for each image pixel in order to establish an undistorted transformation. Feature selection based on divergence criteria indicates that terrain parameters compare favourably with the MSS data in terms of ability to distinguish between forest classes. However, maximum likelihood classification results for MSS data, corrected for slope-aspect effects using a variety of functions, show little or no significant improvement over results obtained using uncorrected data. This outcome is discussed with a view to achieving a better understanding of both the physical principles and the image processing methodologies involved

    Evaluating LANDSAT-4 MSS and TM data

    Get PDF
    Interband line pixel misregistrations were determined for the four MSS bands of the Mistassini, Ontario scene and multitemporal registration of LANDSAT-4 products were tested for two different geocoded scenes. Line and pixel misregistrations are tabulated as determined by the manual ground control points and the digital band to band correlation techniques. A method was developed for determining the spectral information content of TM images for forestry applications

    On the nature of the magnetic ground-state wave function of V_2O_3

    Full text link
    After a brief historical introduction, we dwell on two recent experiments in the low-temperature, monoclinic phase of V_2O_3: K-edge resonant x-ray scattering and non-reciprocal linear dichroism, whose interpretations are in conflict, as they require incompatible magnetic space groups. Such a conflict is critically reviewed, in the light of the present literature, and new experimental tests are suggested, in order to determine unambiguously the magnetic group. We then focus on the correlated, non-local nature of the ground-state wave function, that is at the basis of some drawbacks of the LDA+U approach: we singled out the physical mechanism that makes LDA+U unreliable, and indicate the way out for a possible remedy. Finally we explain, by means of a symmetry argument related to the molecular wave function, why the magnetic moment lies in the glide plane, even in the absence of any local symmetry at vanadium sites.Comment: 7 pages, 1 figur

    CCRS proposal for evaluating LANDSAT-4 MSS and TM data

    Get PDF
    The measurement of registration errors in LANDSAT MSS data is discussed as well as the development of a revised algorithm for the radiometric calibration of TM data and the production of a geocoded TM image

    Novel electronic states close to Mott transition in low-dimensional and frustrated systems

    Full text link
    Recent studies demonstrated that there may appear different novel states in correlated systems close to localized-itinerant crossover. Especially favourable conditions for that are met in low-dimensional and in frustrated systems. In this paper I discuss on concrete examples some of such novel states. In particular, for some spinels and triangular systems there appears a "partial Mott transition", in which first some finite clusters (dimers, trimes, tetramers, heptamers) go over to the itinerant regime, and the real bulk Mott transition occurs only later. Also some other specific possibilities in this crossover regime are shortly discussed, such as spin-Peierls-Peierls transition in TiOCl, spontaneous charge disproportionation in some cases, etc.Comment: To be published in Journal of Physics - Condensed Matter, conference serie

    Enhanced dimerization of TiOCl under pressure: spin-Peierls - to - Peierls transition

    Full text link
    We report high-pressure x-ray diffraction and magnetization measurements combined with ab-initio calculations to demonstrate that the high-pressure optical and transport transitions recently reported in TiOCl, correspond in fact to an enhanced Ti3+-Ti3+ dimerization existing already at room temperature. Our results confirm the formation of a metal-metal bond between Ti3+ ions along the b-axis of TiOCl, accompanied by a strong reduction of the electronic gap. The evolution of the dimerization with pressure suggests a crossover from the spin-Peierls to a conventional Peierls situation at high pressures.Comment: 9pages, 4 figure
    • …
    corecore